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Abstract  
 
 We present a method for obtaining the distance of closest approach of two 
trajectories in three-dimensional space, and the point on each trajectory that is closest to 
the other (the points of closest approach).  First, calculations are done for straight lines, 
and then for curved lines.  The distance and points of closest approach, in particular, are 
useful for finding a vertex for two particle tracks in the MIPP detector at Fermi National 
Accelerator Lab.   
 
Introduction 
 

In the MIPP experiment, a beam usually made of protons, pions and kaons 
collides with an elemental target.  The information provided for a particle track resulting 
from this collision includes a given position on the track (adequately close to, if not, the 
first measured point), the momentum vector at that point, the magnetic field acting on the 
particle and the particle charge.  Using this information, the distance and points of closest 
approach between two of these tracks, one positively charged and the other negatively 
charged, may be considered to determine if these tracks form a vertex (V0). 
 
Distance and Points of Closest Approach for Straight Tracks 

 
The general overview of the process starts with defining equations describing the 

tracks.  From these, a vector of the distance between the two tracks is formed by 
subtracting the negative track equation from the positive one.  This distance vector is 
squared, and the derivative is taken.  When the derivative is equal to zero, the distance of 
closest approach is smallest.     

First, the two tracks will be assumed to have no curvature.  The equations for the 
straight tracks are 
rp = r0p + up*tp [1]    
rn = r0n + un*tn [2] 
with rp representing the position on the positively charged track and rn the position on 
the negatively charged one.  (All parts of the equations ending in p refer to the positive 
track, and all ending in n refer to the negative track.)  r0 is the position vector of the given 
position, u is the unit vector in the direction of the track momentum, and t is a parameter 
describing position on the tracks.  The distance vector between the two tracks is  
 
d = rp – rn = r0p – r0n + up*tp – un*tn 
 
From here on, r = r0p – r0n.  The distance vector squared is 
 
|d|2 = r2 + 2r*up*tp – 2r*un*tn – 2up*un*tp*tn +tp2 + tn2 

 
The derivatives with respect to the t’s are  
 



ð|d|2/ðtp = 0 = 2r*up – 2up*un*tn + 2tp   
ð|d|2/ðtn = 0 = 2r*un – 2up*un*tp + 2tn   
 
The derivatives rewritten in canonical form are 
 
ð|d|2/ðtp = tp – (up*un)*tn = -r*up 
ð|d|2/ðtn = -(up*un)*tp + tn = r*un 
 
The solutions of the linear system are 
 
tp = [-r*up + (r*un)(up*un)] / [1 – (up*un)2] 
tn = [r*un - (r*up)(up*un)] / [1 – (up*un)2] 
 
Now tp and tn can be substituted into equations 1 and 2 respectively to obtain the point 
on each line that is closest to the other.  
 
Points of Closest Approach for Curved Tracks 
 

Now, the two tracks will be assumed to have curvature.  The equations for the 
tracks now include a term describing the curve. 

 

 
c = k*(u x ŷ) / |u x ŷ| (the unit vector perpendicular to both the momentum and y-axis 
multiplied by k, a parameter describing the curve).  We have chosen the magnetic field 
from the magnets on the outside of the chamber to be in the y-direction, and the trajectory 
will curve perpendicular to the field and the particle’s velocity.  The distance vector 
between the two tracks is  
d = rp – rn = r + up*tp – un*tn + cp*tp2 – cn*tn2. 
The distance vector squared is  
 
|d|2 = r2 + 2r*up*tp – 2r*un*tn + 2r*cp*tp2 – 2r*cn*tn2 – 2up*un*tp*tn + tp2 + tn2 – 
2un*cp*tn*tp2 – 2up*cn*tp*tn2 – 2cp*cn*tp2tn2 + cp2tp4 + cn2tn4 
 
Terms that include cp*up and cn*un are zero because c is perpendicular to u.  t is small 
because r0p and r0n are assumed to be close to the vertex, so we dropped terms that were 
3rd t degree and higher.  Taking the derivatives with respect to the t’s, the result is  
 
ð|d|2/ðtp = 0 = 2r*up + 4r*cp*tp – 2up*un*tn + 2tp – 4un*cp*tn*tp – 2up*cn*tn2  
ð|d|2/ðtn = 0 = 2r*un + 4r*cn*tn – 2up*un*tp + 2tn – 4up*cn*tp*tn – 2un*cp*tp2  
 
The expressions written in canonical form are  
 
ð|d|2/ðtp = (1 + 2r*cp – 2un*cp*tn)*tp – (up*un – up*cn*tn)*tn = -r*up 
ð|d|2/ðtn = -(up*un + un*cp*tp)*tp + (1 – 2r*cn – 2up*cn*tp)*tn = r*un 
 



We calculated tp and tn iteratively, so for tp0 and tn0, we dropped the 2nd degree t terms: 
 
(1 + 2r*cp)*tp0 – (up*un)*tn0 = -r*up 
-(up*un)*tp0 + (1 – 2r*cn)*tn0 = r*un 
 
Solving the linear system, we got 
 
tp0 = -(r*up)(1 – 2r*cn) + (up*un)(r*un)  
          (1 + 2r*cp)(1 – 2r*cn) – (up*un)2 
tn0 = (r*un)(1 + 2r*cp) – (up*un)(r*up)  
          (1 + 2r*cp)(1 – 2r*cn) – (up*un)2 
 
Please note that when the tracks’ curves are zero, tp0 and tn0 are reduced to tp and tn 
from the solution for the straight line tracks. 
 We defined tp1 = tp0 + ep and tn1 = tn0 + en.  We substituted tp1 and tn1 into the 
derivative expressions (including the 2nd degree terms): 
 
(1 + 2r*cp)*tp1 – (up*un)*tn1 = -r*up + 2un*cp*tp0*tn0 + up*cn*tn02 
-(up*un)*tp1 + (1 – 2r*cn)*tn1 = r*un + 2up*cn*tp0*tn0 + un*cp*tp02 
 
The tp0 and tn0 terms that are also in the derivative expressions were cancelled, and we 
were left with 
 
(1 + 2r*cp)*ep – (up*un)*en = 2un*cp*tp0*tn0 + up*cn*tn02 = sp 
-(up*un)*ep + (1 – 2r*cn)*en = 2up*cn*tp0*tn0 + un*cp*tp02 = sn 
 
We defined sp and sn to be the right sides of the previous expressions.  After solving the 
linear system, we get 
 
ep = sp*(1 – 2r*cn) + sn*(up*un) 
                               D 
en = sn*(1 + 2r*cp) + sp*(up*un) 
                               D 
 
D = (1 + 2r*cp)(1 – 2r*cn) – (up*un)2, the denominator from the tp0 and tn0 expressions.   
 The radius of curvature, R, must be known in order find the curvature, k.  R can be 
found from the relation q*By*R = (px

2 + pz
2)1/2, where q is the particle charge, B is the 

magnetic field (only in the y-direction as noted earlier), and p is the momentum of the 
particle.  The 2nd derivative of a parabolic function is equated to the 2nd derivative of a 
circle equation with the radius as R. 
y = ax2 => y′′ = 2a 
x2 + y2 = R2 => y′′ = R2(R2 – x2)-3/2 
Estimating the curvature at x = 0 of a parabola and a circle with radius R to be equal, the 
result is 
y′′ = 1/R = 2a => a = 1/(2R) = k. 



 After plugging tp1 into rp and tn1 into rn, the x-, y- and z-positions of the points on 
the tracks that begin and end the distance of closest approach line segment can be found 
by using the respective components of the vectors used in rp and rn and solving for the 
respective components of rp and rn.  Using these coordinates for each line, the distance 
between them can be calculated, and this will be the distance of closest approach.  The 
midpoint on this segment will be the point of closest approach.   
 
Conclusion 
 
 The method we presented is a reasonably accurate way of finding the points of 
closest approach on two trajectories only knowing the   


